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ABSTRACT

Sets of systems of ordinary functional-differential equations with

Volterra type functionals under sets of initial values are considered . Upper

and lower bounds are constructed for the sets of all solutions. Classes

of such problems are given where these bounds are optimal. The main tool

is a Lemma of Max Muller on inequalities. Also ideas from interval

mathematics are used.
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SIGNIFICANCE AND EXPLANATION

If differential equations

u ’( t )  = f ( t,u(t)), u (O) = a

appear in Applied Mathematics there is normally not just one right hand side

f(t,u) . Instead of this a whole set {f} of right hand sides must be

considered . This is due to many facts such as: data errors, data intervals

obtained from measurements, approximation of f by a more suitable function,

poor knowledge of the laws involved etc. The same is true for the initial
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“value” a which is usually a set {a]. Hence the above initial value

problem has to be replaced by the inclusion problem

u’ Ct) C {f(t,u(t)) 1, u (O) C {a} .

It is normally completely impossible to solve all the real problems

which are combined in this set of problems. The goal of the following paper

is therefore to find at least lower and upper bounds to the set of all such

solutions. This can always be done. Since these bounds are sometimes very

pessimistic , classes of such problems are given where the bounds obtained

are optimal.

The main ideas of this paper are also valid in the more general case

where f does depend as a functional upon the unknown solution u. This

is written in the form f(t,u ( t) , u (~ )). Therefore the theory of this paper

also includes integro-differential equations and difference—differential

equations. Sets of such problems do occur for example in Economics and in

Biology.
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BOUNDS FOR THE SET OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS

*Karl L. Nickel

1. Introduction

In the following paper systems of functional-differential equations

(1) u’(t) ~ f(t,u(t),ut~)) for 0 < t < T

are considered under the initial conditions

(2) u(O) a

Herein u = (u ,u ,...,u ) ,  f = (f ,f ,...,f ) and a (a ,a ,...,a ) are n—vectors.
1 2  n 1 2  n 1 2  n

As usual u or u(t) means the value of the function u at the point t; moreover

u’(t) = du/dt. Opposite to this the notation ut) means that u is regarded as an

element of the class of admissible functions . Hence f(•,•,u(~ )) is a functional on U;

in what follows only special “Volterra ’ functionals will be regarded .

If f is continuous then the system (1), (2) is equivalent to the system of func-

tional—integral equations

t
(3) u(t) = a + f f(~ ,u(s),u (~ ))ds for 0 < t < T

0

It is the subject of the following paper to find bounding functions v (t), w(t) such

that for every solution i~~ ( t )  of (1), (2) or (3)

(4) v(’-) < 
~~~

( t)  < w(t) for 0 < t < T

Hence the classical theory of maxima] and minimal solutions for differenttal equations

appears as a special case of these results .

If a solution ~ of (1), (2) is uniquely determined then it is trivial that (4) is

satisfied for w v := U . It is therefore interesting to switch to a more general

problem: Let (a) be a set of initial values and let (f) be a set of right hand sides

to (1). Then the more general initial value problem

*Visiting from the University of Freiburq/Germany .
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(5) u’(t) C {f(t,u(t),u( ))} for 0 < t < T

(6) u(0) e (a)

is considered. Let (ii) = (~~(t)) be the set of all solutions of (5), (6). Again two

functions v (t), w(t) are looked for such that (4) is true for any solution ~ C ( G) .
If one writes £v ,w) for the function interval from the two bound functions v and w

then this can be written as

(7) {~) e (v ,w~

it is in general quite simple to find rough bound s v ,w. In what follows special

emphasis is theref ore given to the look for “optimal” bounds . Here “optimality ” means

the following : let there exist the infimum and the supremum of the set (ul such that

(8) v inf{i },  w = sup(i)

In tha t case one can call tv ,wJ the “interval hull” of C t ) .  It is the goal of this

paper to find classes of sets {f) and Ca l such that (7) and (8) are true .

In order to get such results a lemma of Max MUller (1927) on differential  inequalities

is essential . This lemma has been published exactly 50 years ago. For decades however ,

it remained widely unnoticed. In what follows this lemma will be extended to the case

of functional-differential inequalities. This will be done by extending an old paper

of the author (Nickel (1961)).

It should finally be remarked that the problem of this paper and some of the formula-

tions have been strongly influenced by the ideas of interval mathematics.

—2—
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2. Notations and assumptions

Let m E  14, 0 <  TE R, I : [0, T J ,  10 
:= (0 ,T J ,  a C R~~~. The n-vectors a .  u ( t ) ,

f ( t ,u ,u (~ ) )  are written as a = (a1
,a2

, . . ., a ) ,  u = (u
1
,u

2 , .. ., u ) ,  f =

Together with the k-th component U
k 

of the vector u also the n-i-vector

(u
l.u2~

...1uk l ?uk+l....~
u
fl
) is used .

Let the class Z of the admissible functions be defined as the set of all function

vectors u : I ‘ P~, continuous on I such that the derivative u’ = du/dt exists in

The notation u (S) means that u is an element of the class Z .  Opposite to this

u, u’ or u(t), u ’(t) mean the values of these functions at the point t.

Inequalities v(t) < w(t) or v < w are always meant componentwise as v
k
(t) < w~ (t)

for k = l(l)n. Inequalities of the kind v (~ ) < wt ) are meant both componentwise and

pointwise for all points in the definition set.

For v < w the interval (v ,wJ is defined as the set (v,wl = (v(t) ,w(t)) := Ci ~

v(t) < z < w(t)}. Similarly Iv(~ ),w(.)) := {z C Z)v (.) < z(~ ) < w (~ )).

Let the dependence of f~ (t~u.u(.)) of any Component U
k

( )  for k = l (1)n be

that of a “Volterra” functional . Here a functional g(t,z( )) is called “Volterra ”

if it represents a mapping in ]R such that the value of g at the point t depends

only on the value i(s) for 0 < a < t (g depends only upon “the past” of the functieri

Examples of Voiterra functionals are

t
g (t,z(.)) : f  K ( t , s , z ( s ) ) d s

0

(9) g(t ,z (~~))  := z ( T.t )  with 0 < r < 1

( z( t — s) for O < s < t ,
(10) g ( t ,z ( . ) )  •:= =

~... a( t - s) for O < t < s

with some given function a (t )  for

—s t < 0

These examples show that the theory given in this paper can be applied to: differential

equations , (Volterra) integro—differ ential  equations , d i f fe rence-d i f fe ren t ia l  equations

—3—



with retarded argument and natural ly  also to combinations of these equations .

In order to simplify the results the following notation will be used for the

casponents of f(t,u,u(~)): the second argument ii ~ of f is broken up in

the component U
k 

with the same index k as 
~k and in the rest vector

Furthermore it is suitable to have a special notation for the set of all functions

if the arguments lie in certain intervals. This will be denoted by

:= { f(t . uk .ku ,u ( . ) ) I
ku e  r kv ,kw l . u ~~~ 

e [v ( . ) , w ( . ) J )  .

Prom section 7 to the rest of this paper only functions f will be regarded which are

partially monotone. The corresponding definitions will be given in section 7.

—4— 
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3. Existence

The following theorem is the extension of the well known Peano existence theorem

for systems of differential equations:

Theorem:

Let f be defined and continuous on I x x Z. Then (1), (2) and (3) are

equivalent. If f is bounded there exists (at least) one solution ~ E Z of (1), (2).

If f is not bounded then there exists a solution of (1), (2) at least in a largest

interval 0 < t < T < 1’.= 1 =  . .

Proof: The equivalence is trivial . For the existence the fixed point theorem of Schaudcr

is applied to equat on (3). The main ideas are exactly the same as in the case of

differential equations . They are described in the book of Walter (1970), p. 23—25.

—5—
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4. The Lemma of Max M~i11er

Lemma :

Let the functions v,w C Z with v < w satisfy the following inequalities

(11) v(0) < a < w(O)

(12) v~ <

(13) w~ >

for t C ~~ and k = l(l)n

Then any solution u C Z of (1), (2)  is bounded by

(14) v ( t )  < ~~~
(t)  < w ( t )  for t I I

Corollaries:

1) If u C Z is a solution of the inequalities u (O) < a, u’ < f(t, u,u(~ ) )  in

‘
~~ ~~~ii

u ( t )  < w(t) for t e I

2) Similar  I

u ( t )  > v (t )  for t e I

for any solut ion u C Z of the inequalities u(0) > a, u ’ > f(t,u,u( )) in I~
.

3) If all  
~k 

are s tr ict ly monotone (increasing or decreasing) with respect to

(at least) one of the components of u (S), it then suffices to have the > — and

<—si gns in ( 12) and (13) instead of the >— and <—signs .

Remarks:

1) This Lemma has been formulated and proven by Max M~i1ler (1927) as Theorem S

on the pages 13 to 15 for the special case where f does not depend upon u (~ ). See

W. Walter (1970), p. 93—94.

2) The original notation of M. Muller was very inconvenient. It has here been

replaced by the interval notation.

3) Kindly note that there are no assumptions to be made with respect to the function

f, such as continuity, monotonicity etc.

Proof: The original proof of M. MUller carries right over to this case.

—6-
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5. Example

In. the following example n = 2. The funct ional  (9) is used for T = 1/2 together

with the other functional

(u~~(s) + u~~( s) ) d s

Let

f 1
(t , u , u ( . ) )  := —2u~ + u2

/(l + t2 ) + (u
1
(t/2) + u

2
(t/2))/2

f2(t,u ,u( )) : 1 - sin(su
1
/2) + 2u

2
(l — 2u

2
) + ~ f ( 2~~~ + u~~(s))ds ,

0 < a
1
, a 2 

< 1

Define V
1 

= v2 := 0, w
1 

= w2 := 1 for t > 0. Then one verif ies  easily for t > 0

f1
(t ,v

1
,Iv 2,

w
21 ,1v 1

(~ ),w1
(.fl,(v 2

(.),w
2
( )J ) = 0 + [0,1)/(1 # t

2
) + 10 ,11 > 0

f
1
(t ,w

1
,1v

2
,w
21,1v 1

( , w
1
(. ,1v 2(-),w2~~~ 1 = —2 + 10 ,111(1 + t

2
) + [ 0,1 1< 0 ,

f 2 (t ,v 2 , . . . )  = (0 ,1) + 0 + (0 ,1) ~ 0

f 2 (t , w2 , . .  .) = (0 , 1] — 2 + (o ,]j < 0

Since f 1 and f2 are s t r ic t ly  monotone increasing with  respec t to both components

and u 2
(~~) the third corollary to the lemma can be used . This g ives the a pr ior i

estimate 0 < u
1
(t), ‘~2

(t) < 1 for t ~‘ 0 for any solution U.

I— 
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6. Uniqueness and error bounds

For ordinary d i f fe ren t ia l  equations all uniqueness theorems can be derived from

the Lemma of M. MUller . In his original paper he did use the lemma exactly for that

purpose. Similarly probably all known a posteriori bounds can be proven with its help.

Therefore a very large number of such theorems can immediately be proven also for the

case of functional-differential equations. It is possible to translate all the results

from the book of W. Walter to these extended systems of equations . Some f i rs t  results

have already been given in the old paper by K. Nickel (1961). It is however, not the

purpose of this paper to publish such theorems .

-8—
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7. Monotonicity conditions

Definition (unconditional).j partially isotone/antitone/monotone):

Let g(x
1.x2

, . . . ,x ) be a mapping g : D -~ R with D C R
Ut Again the notation

= ~ (x~ .~ x) is used . The function g is called unconditionally partially

isotone or antitone on D with respect to the variable

g (y
k .k

c) > g (x ~~,~~x) for 1’k > or < x

and for all (x
k.k

x). (yk.k
x) C D. A function which is either unconditionally par t ia l ly

isotone or unc. part. antitone is called unconditionally partial~y monotone.

Kindly note that the function g(x
1
,x
2
) : x

1
•x2 is unconditionally partially

monotone with respect to x
1 

and x2 on 0 : 10,”) x (0,.’), but not on D :“

Definition (monotonicity class M):

Let the class J~l consist on all functions f(t,u,v(~ )) for which the fo.~lowirg

is true: Each function f
k
(t.u

k.~
u.v(.)) is unconditionally partially monotone on

x 1~ x ~
n-1 x Z with respect to any component of 

k
u and v ( . ) ,  but not necessarily

with respect to

If f C M then it is convenient to write

This clearly means that the vectors k’~ 
and u(S) are divided in the two sets of

components for which is isotone (4) and antitone (+).

Let f e 11. Then in the Lemma of M. MUller the (rather inconvenient~ inequalities

of sets can be replaced by real inequalities (which are much simpler to handle). In

this case the Lemma reduces to the

~pecial case of the Lemma:

Let I C M. Assume that (11) is true for functions v ,w C Z with v < w and

that furthermore

< f
k

(t ,v
k .k ~k~

4
~

v (  ,w ( . ) ~~)

w~~ > 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

for t 1 1
0 

and k = l(l)n

— 9—



Then any solution u C Z of (1), (2) is bounded by ( 14); furthermore the corollaries

1) to 3) hold .

The proof cones immediately f rom the Lemma together wi th  the definition of the

class N.

—10-



8. ConStruction of bounds

In what follows the special case of the Lemma will be used to construct bound func-

tions v and w. The above problem (1), (2), (4) will be replaced by a more general

since no additional difficulties are generated by that extension:

The initial data ~ in the initial conditions (2) are to be replaced by a set (a).

For simplicity assume (a) C (a ,Uj with two vectors a,a C R
n and a < a such that

(15) cz , a e  Ca ) E [a,aJ

Hence the initial conditions (1) are to be replaced by (6). Let C u )  be the set of

all solutions of (1) under the set of all initial conditions (6). Wanted are bounds

v,w such that (7) is true.

Assume that f is continuous and bounded on I x x Z . The following sequence

of problems for v C 14 is considered :
_ ( V~ = f

k
(t.vk.k~~

.k ~~~~~~~~~~~~~~ 
-

(16) 
1

~ 
w
k 

= f
k
(t ,w

k~k
wt .k~~

.k
w( )t .k~~~

)4) + —

for t € I~~ and k = l(l)n

(17) v(0) = ci - l/v, w(0) = a + 1/v

By the existence theorem of section 3 there exists for every v C 14 at least one

solution v,w C Z of the coupled system (16), (17). An arbitrary solution is picked

up and called (v°,w”). Then

V V+l v+l V
V < ‘,  < u < w < w

for all V C 14 and for any solution £~ e Z of (1). (2). This follows by the special

case of the Lemma and by the definition of the right hand sides in (16) and in (17).

ice the sequences Cv”) and {w”) are monotone and bounded . As sequences of

measur,,ble functions they have measurable limit functions v(t) := sup(v’1(t)) and

w(t) : i nf(w (t }) .  Furthermore

(18) v < t ~~< w .

One can show as usual that these sequences are uniformly convergent on 1 and that

V ,W C  Z (see W. Walter (1970), p. 68). Furthermore the pair (v,w) satisfies the

—11—
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following funct ional-different ial  system in I
~ consisting of 2n equations

( 
~~k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(19) (
1..~ 

w~ “ fk
(t .wk .k~~~

,
k~~~.~~~~~t , ! 4

under the 2n initial conditions

(20) !(0) a, w(O) = 0

If U t  Z is a solution of (1), (2), then the pair (i~,G) is also a solution of (19),

(2). In general the reverse is however, not true , i.e. the functions v, w are in
.

• _ .
general no solutions of U), (6). Hence they are not minimal or maximal solutions to

(1), (6) in the usual sense (see however , section II). In what follows the interval

(v ,w) will be called maximal interval solution of (1), (6).

The reason for this notation comes from the following : Define the interval operator

P(v,w) = (F
1
,F
2
,...,F )  by its k-th component as follows:

F
k
(v ,w)(t) : 

~ -k + 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a
k 

+

Any solution G of (1), (6) satisfies

I

I’~ reover the interval (v,w] is a fixed interval of the operator F by (19) and (20).

By construction (v ,w) is the smallest fixed interval of F for which (18) is true.

If a = a = a and if maximal and minimal solutions of (1), (2) exist then they are

equal to v and ~~.

This idea consists therefore in replacing the usual ordering relation < (component-

wise with respect to k and pointwise with respect to t) by the inclusion C as a

new ordering relation (also componentwise and pointwise).

—12—



9. Bounds for the solutions of sets of functional-differential equations

The equations (1 ) ,  (2) are now being replaced by inclusions (5), (6).

Theorem:

Let (15) be satisfied by the set of initial values (a). Assume that there exist

two r ight hand sides f, f I ( f )  with f < I such that for all solutions u C Z of (S)~ (6)

f(t,u,u(~ ) ) ,f(t,u,u (~ ) ) € {f(t,u,u(.)) ) C (f(t ,u,u( )) ,f (t,u ,u() ) I in

Assume furthermore that the two functions f,f € Z and are continuous and bounded on

I X x 2. Construct the maximal interval solutions to a, f and a , f to the

problem (1), (2) and call them (v ,w) and (v ,w). Then v < w and for the set {u)

of all solutions u € 2 of (5), (6) the inclusion

(21) {i~i) C Iv ,w)

is true.

Remarks: 1) There is nothing assumed for one of the right hand sides f C (f) if

f ~ f , f , only the existence of that function. If I for example is not continuous, no

solution u of (1), (2) may exist. Kindly note that the theorem deals only with

existing solutions.

2) in order to f ind the two hounds v ,w for all (in general “ many) solutions of

(5), (6) one has to determine the maxima] interval solutions of two coupled systems with

2n equations each. The functions v and w are a ‘ side effect” of this procedure,

they are not needed for the inclusion (21) . They do have however , a meaning as “inner ”

bounds to Cu) in the sense of interval mathematics .

Proof: Let u be a solution of (5), (6). Then U ’ = f(t ,u,u (~ )) ‘- f ( t , t~,t~ ( ) )  in I
0~

Then u < w in I by the corollary 1 of the lemma and by the construction of (v,w).

The inequality u > v is shown similarly which finishes the proof.

-13-
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10. Two examples

1) Let n = l , a . ’ 0,

(22) f ( t ,u ,u ( ~~) )  := 2(/ [ (t) l + u ( t~ t ) )

and

(1) : (110 < ‘r < 1)

The functional used is u( 1 .t )  by ( 9 ) .  I do not know if the problem (1). (2) with f

by (22) can explicitly be solved for r * 0,1.

Since f is isotone in u (S) the two inequalities (12) and (13) of the Lemma

are decoupled. By putting v(t) := —c , 0 ‘C 
~ ‘C 1 one gets v(0) = -c < 0 = a and

0 = v (t) < 2 ( I I v ( t ) I + v(r•t)) = 2/~ (1 —

Hence by the Lemma ~ (t)  > —c for any solution ~ c 2 of (1), (2). For c -~ 0 one

gets ~(t) > 0 and therefore by (22) there is also ~~
‘ It) > 0 for any solution u.

Hence 0 < ~~(t•t) < i.~ ( t )  for any solution, therefore one can define

f(t,u,u(~ )) := 0, ?(t,u,u(.)) := 2 (/ ~u ( t ) I + u(t))

The maximal interval solution is found easily as V := 0 , w := (exp t - 1)
2 

hence

(23) u(t) I (0,(exp t — l)~~) for t > 0

for all solutions u of (1), (2) with (22).

If one now changes the functional (9) in (22) to (10) one gets the function

r 2(/ i~~~ )I + u(t — s)) for 0 < s < t
(24) f(t,u,u( )) : ( _____ 

— —

~~2Iju(t) J for 0 < t < s ,

where 0 < $ < “. With this right hand side (24) one gets a whole set of difference-

differential equations with retarded argument. The same ideas as above give exactly the

same bound functions v and w. Hence also in this case (23) is true.

The same can be said for the third different right hand side

(25) f(t,u ,u (~)) := 2 (IIu(t)I + (f I ( ) 1 ~
’d ) ”~)

with 1 p ‘C . The functional in this case is the Volterra p-norm with the sup norm

for p . ’.

-— 

-

~ 
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Since in all three cases the bounds v , w are solutions itself to u ’ = f , u ’ = I

one gets in addition the optitnality condition

(26) v ,w t {~) C

This result is highly surprising. The three problems with the different right hand

sides (23), (24) and (25) most certainly have completely different solutions and therefore

also different solution sets. In spite of this fact all three sets have the same bounds

and furthermore these bounds are optimal.

This example shows also, that it is very of ten simpler to look for bounds v ,w •

such that (26) is true than to try to solve the equations.

2) Let n 2, the given system is

- 

f 

u~ = u
2
, u

1
(0) = a

1 
,

= —u
1, u 2

(0) a
2

The uni quely determined solution is

= a
1 

cos t + a
2 sin t , = —a

1 si n t + a 2 cos t

Let a
1 

C [0,1), a
2 

€ 10 ,1]. Then by the rules of interval arithmetic (see R. E . Moore

( 1966) )

C (0 ,1) cos t + [0 ,1) sin t

u2
(t )  C (—1,0) sin t + [0 ,1) cos t

The set of solutions is hatched in Figure 1. In the picture also the “main ” solution

for a
1 

= 0
2 

= 1/2 is shown. The ext ended system (19) reads here as

vj =  v 2
, v

1
(0)=0 ,

—w
1
, v

2
(0) = 0

v w
2
, v

3
(0) = 1 ,

. 
v~ = —v1

, v
4
(0) = 1

The solution to this system is unique , hence the ~axima1 interval solution

-15- 
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2v
1

( t) = _e t + sin t + con t

= _e t 
+ cos t — sin t , 

-

2w
1
(t) et + s i n t + c o s t ,

2w
2
(t) = et + cost_ sin t

Hence the functions !, w “back away ” from the “main” solution (see Figure 1) as fast

as et/2 to below and to above.

For t = 2s one sees {u
1

(2s) ) , {~~2
(2i r ) )  C (0 ,1]. But w

k
( 27T ) — ~~ç

(2ii ) = e2
~ = ‘

53 !~.4

for k = 1,2. The real set of solutions Cu) is therefore surpassed at t = 2s by

(v ,w) by a factor of more than 500 and this grows rapidly worse for larger values of tH I

This example was first discussed by R. E. Moore (1966) by using geometrical reasoning .

—17—
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11. Optimal bounds for the set of solutions: maximal and minimal solutions

By section 9 one sees that it is enough to restrict the survey to the solution of

two real functional differential equations if one wishes to bound the solutions of sets

of such equations. Hence the following optimality considerations are given only for

systems of the type (1). Since it is no aggravation the initial inclusion (6) has however,

been used instead of the initial condition (2) . It is always assumed that (15) is true.

As is shown by the second example of section 10 the maximal interval solution (v ,wJ

gives in general not optimal bounds to the set of Solutions Cu). In this and in the

next section classes of problems will be given such that there is optisnality either in

the sense of (26) or at least of (8).

Let f C M. Assume fur thermore that all functions f
k
(t
~~k

.k
u
~
1’T(.)) are uncondi-

tionally partially isotone with respect to any of the components of 
k
U a~d vt~).

This is called “quasimonotone increasing” by W. Walter (1970) in the case of differential

equations. With this condition the equations for v and w in (16) and (19) are

decoupled from each other. Therefore the functions v and w are even solutions of

(1). In the case of differential equations these are the well known minimal and maximal

solutions (see w. walter 1970, p. 95). Hence (26) is true which implies (8), therefore

the bounds v and w are optimal.

A simple example f t?i!’~s case was given in section (0.1). Another example for

n = 2 is the system of differential equations

- (u~ = 2/j~ J, u (0)  = 0
(27) /

~ u = +2/~~J. u
2 (0) = 0

One f inds  easily v
1

(t) = v2 (t)  0 , w1
(t)  = w

2
(t)  = t 2 .

—18-
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12. Further cases with optimal bounds

If one changes in the system (26) the sign in the second equation one gets

= 24~~J~ 
u
1
(0) = 0

— -2/~~J, u
2
(0) = 0

Now the right hand sides are not anymore “quasisnonotone increasing ”. The set of all

solutions can be described quite easily, one finds (~1
(t)) C 10,t

2
1 , {s~2

(t)} C [0,t2J .

The maximal interval solution of (19), (20) produces the bounds

v 1(t) : 0, v
2
(t) : —t 2 , w

1
(t) : t~~ “2 0 .

They are again optimal bounds. Opposite to the results of section 11 the functions v

and w are not anymore solutions of (1) (but certainly of (19)).

By inspection one sees however, that the “crossed” couples (v
1
, w

2
) and (w

1
,v 2

)

each are a solution to (1). This is responsible for the optisnality. Because if v

and w are at least componentwise solutions of (1) then there exist no smaller intervals

(v ,wJ C [v ,w] such that (4) is valid. Hence in this case (8) is true which means

optimality.

‘the classes of problems (1), (6) considered in this section are extensions of this

example.

Definition (monotonicity matrices) : Let f c M.

Define for i = l(l)n

a1. := 1

0 if f. does not depend upon u
k

alk : +1 if f
1 

depends isotone upon U
k

—1 if 
~~ 

depends antitone upon

for i * k l(1)n

0 if f . does not depend upon uk 
(.)

41 if f 1 depends isotone upon u
k

( )

if f .  depends antitone upon

for k = 1(l)n

—19-
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T~e matrices A (a. ) aid B = (b . ) are called the monotonic matrices to 1.

Definition (snonotonicity condition (M)): Let f C M.

Assume the existence of associate ma trices A ’ = (a~ ), B’ = (b~ ) to the

monotonicity matrices A and B such that for all i,k = l(l)n

a’ C {+l ,—l), b~ C {+i ,— i }1k

a~ = a . fo r a .  *0 ,ik ik ik
(29) b’ = b . for b . * 0ik ik

a ’ = b ~ik ik

a ’ a ’ - a ’
ik li 1k

Then f is said to s a t i s f y  the condition (H) .

Remark: By (28) one sees immediately

a .k a
~

. . a~~ for all t = l(l)n

Theorem:

Assume (15). Let f € H be continuous and bounded on I x ]Rn X 
~~~. Assume that

I satisfies the condition (H). Let (v, w) be the maximal interval solution to (1), (6)

Then (v ,wj is even the_interval hull of the set ~f all solutions {~ } of (1),  (6) ,

i.e. (8) is true.

Proof: By construction of (v ,wJ the inclusion (18) is true. Define the two function

vectors 
~ 

(p
1
,p
2
,...,p ) = p (t), q = (q1,q2 q )  = q(t) by

I ~~~ 
for a

~ k 
= +1

c
1.. W k for a

lk
l ‘

I ~~~ for alk = +1 ‘ç
L ~~k 

for alk — -l

Certainly 
~ k 10

~ 
€ (a)  and ~~ (O) C (a). Moreover the vectors p and q are by

construction and by (28) both solutions of (1) . Hence v and w are componentwise

cc.posed of solutions of the problem (1) ,  (20) . Hence (8) is true. t —

These need not be uniquely determined.

-20-
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